Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/1006 -
Telegram Group & Telegram Channel
👇 Как обрабатывать крупномасштабные датасеты с иерархической кластеризацией, учитывая её высокую вычислительную стоимость

Иерархическая кластеризация в наивной реализации плохо масштабируется и становится крайне ресурсоёмкой при работе с большими объёмами данных. Однако существуют эффективные стратегии:

🔧 Приближённые или гибридные методы:
1️⃣ Использование mini-batch иерархической кластеризации, где анализируется не весь набор данных, а его небольшие случайные подвыборки.
2️⃣ Применение предварительной кластеризации (например, алгоритмом k-Means), чтобы разбить данные на подгруппы, а затем применить иерархическую кластеризацию только к центроидам этих кластеров. Это снижает объем вычислений, сохраняя структуру на высоком уровне.

⚙️ Оптимизированные структуры данных:
1️⃣ Использование KD-деревьев или Ball-деревьев может ускорить операции поиска ближайших соседей, особенно при агломеративной кластеризации.
2️⃣ Некоторые библиотеки, такие как Scipy или fastcluster, используют улучшенные алгоритмы и эффективное хранение расстояний, чтобы ускорить вычисления.

📉 Снижение размерности данных:
1️⃣ Применение методов снижения размерности (например, PCA, t-SNE, UMAP) перед кластеризацией может значительно уменьшить вычислительные издержки и упростить структуру данных.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1006
Create:
Last Update:

👇 Как обрабатывать крупномасштабные датасеты с иерархической кластеризацией, учитывая её высокую вычислительную стоимость

Иерархическая кластеризация в наивной реализации плохо масштабируется и становится крайне ресурсоёмкой при работе с большими объёмами данных. Однако существуют эффективные стратегии:

🔧 Приближённые или гибридные методы:
1️⃣ Использование mini-batch иерархической кластеризации, где анализируется не весь набор данных, а его небольшие случайные подвыборки.
2️⃣ Применение предварительной кластеризации (например, алгоритмом k-Means), чтобы разбить данные на подгруппы, а затем применить иерархическую кластеризацию только к центроидам этих кластеров. Это снижает объем вычислений, сохраняя структуру на высоком уровне.

⚙️ Оптимизированные структуры данных:
1️⃣ Использование KD-деревьев или Ball-деревьев может ускорить операции поиска ближайших соседей, особенно при агломеративной кластеризации.
2️⃣ Некоторые библиотеки, такие как Scipy или fastcluster, используют улучшенные алгоритмы и эффективное хранение расстояний, чтобы ускорить вычисления.

📉 Снижение размерности данных:
1️⃣ Применение методов снижения размерности (например, PCA, t-SNE, UMAP) перед кластеризацией может значительно уменьшить вычислительные издержки и упростить структуру данных.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1006

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA